
Relating logic to formal languages

Kamal Lodaya

The Institute of Mathematical Sciences, Chennai

October 2018

Reading

1. Howard Straubing: Formal languages, finite automata and
circuit complexity, birkhäuser.

2. Wolfgang Thomas: Languages, automata and logic, in
Handbook of formal language theory III, springer.

3. Pascal Tesson and Denis Thérien: Logic meets algebra: the
case of regular languages, lmcs.

Finite automata (McCulloch and Pitts 1943)

I Fix finite alphabet A
I M = (Q , I,F , δ)

I Finite set of states Q
Initial states I ⊆ Q
Final states F ⊆ Q

I “Nondeterministic” transition
relation δ(a) ⊆ Q × Q , a ∈ A

I M accepts a word in A∗

I The set of words accepted is
its language

��
����� ��

����� ��
��s

a -b
Y

a

-b

X��
�����

Y��
��

Z��
��

-
a,b

Y

b �
�
�
�/

a

k
b

S
S
S
So

a

Algebra (Myhill 1957)

I Binary relations ℘(Q × Q)
form a finite monoid (M, ◦)
under composition,
generated by the A-labelled
transitions using
δ(w) ◦ δ(x) = δ(wx)

I Morphism
δ : A∗ → ℘(Q × Q) from A∗

(the free monoid on A) to a
finite monoid

I M accepts a word w when
δ(w) ∩ (I × F) , ∅ (language
is inverse image of a finite
subset of the finite monoid)

I Congruence ≡ ⊆ A∗ × A∗

w ≡ x ⇐⇒ δ(w) = δ(x)

��
����� ��

����� ��
��s

a -b
Y

a

-b

A ◦ a = a, b ◦ b = 0

X��
�����

Y��
��

Z��
��

-
a,b

Y

b �
�
�
�/

a

k
b

S
S
S
So

a

a ◦ a ◦ a = 1, b ◦ b = 1
(symmetric group S3)

The automata-algebra connection (Myhill-Nerode 1950s)

Theorem (Myhill 1957, Nerode 1958, Rabin-Scott 1959)
Nondeterministic finite automata, finite monoids and deterministic
finite automata are equivalent.

1. Given a finite automaton (possibly nondeterministic), the
language accepted by it is an inverse image of a subset of a
finite monoid (those relations which take an initial state to a
final state), called its transition monoid

2. Given a finite monoid M with distinguished set of elements D,
(M, 1, {_ ◦ a | a ∈ A },D) is a deterministic finite automaton
(transition function instead of relation)

For a language, the syntactic monoid is the transition monoid of
the minimal deterministic finite automaton for that language

Counter-free automata (McNaughton-Papert 1971)

I Given a finite automaton,
the nonempty word w ∈ A+

is a counter if δ(w) induces a
nontrivial permutation on Q

I The word a is a counter in
the bottom automaton on the
states X ,Y ,Z , the word b is
a counter on X ,Y

I An automaton without any
counter is counter-free, for
example, the top automaton

��
����� ��

����� ��
��s

a -b
Y

a

-b

A ◦ a = a, b ◦ b = 0

X��
�����

Y��
��

Z��
��

-
a,b

Y

b �
�
�
�/

a

k
b

S
S
S
So

a

a ◦ a ◦ a = 1, b ◦ b = 1
(symmetric group S3)

The transition monoid of a counter-free automaton does not
contain any nontrivial subgroup.

Partially ordered automata (Meyer-Thompson 1969)

I In a partially ordered automaton, the states (Q ,≥) are
partially ordered

I A transition from state q can only go to states r such that q ≥ r
I Hence the only cycles allowed are self-loops where q = r ,

falling transitions where q > r cannot climb back
I (Schwentick-Thérien-Vollmer 2002) A partially ordered

two-way deterministic automaton can accept more languages
(e.g. checking the k ’th last letter of the word)

I Partially ordered two-way automata are counter-free

The transition monoid of a partially ordered two-way deterministic
automaton is in DA, defined as: if there is an idempotent element
in a D-class, then the entire D-class is idempotents (this separates
the self-loops from the falling transitions)

Logic on words (Büchi 1960)

FO ::= a(x) | x = y | x < y | Suc(x, y) |¬φ | φ ∨ ψ |∃xφ, x, y ∈ Var1

I Formulas are interpreted over words with pointers indicating
the positions of variables
ababab |= Suc(x, y) ∧ b(x) ⊃ ¬b(y)
ababab 6|= x < y ∧ b(x) ⊃ ¬b(y)
abaabb 6|= Suc(x, y) ∧ b(x) ⊃ ¬b(y)

I Pointer functions like s = [x 7→ 5, y 7→ 6] above are called
“assignments” and written w, s |= φ in logic textbooks

I Formally one can use a “pointers” alphabet A × ℘(V1) where
each variable is constrained to occur exactly once in the word
model. For the first formula above:
(a
∅)
(

b
∅

)
(a
∅)
(

b
{x}

) (
a
{y}

) (
b
∅

)
|= Suc(x, y) ∧ b(x) ⊃ ¬b(y)

Sentences

FO ::= a(x) | x = y | x < y | Suc(x, y) |
¬φ | φ ∨ ψ |

∃xφ, x, y ∈ Var1 ��
����� ��

����� ��
��s

a -b
Y

a

-b

I A sentence is a formula with no free variables, all variables
are bound to quantifiers

I The language {w | w |= ∀x∀y(Suc(x, y) ∧ b(x) ⊃ ¬b(y))} of
words where the sentence holds is that accepted by the top
automaton; the sentence defines the language A∗bbA∗

I Sentence ∃x∃y(Suc(x, y) ∧ b(x) ∧ b(y)) defines A∗bbA∗

Sentences define languages

I Let max(x) = ¬∃ySuc(x, y) be an abbreviation, similarly
define min(x), etc.

I ∀x[a(x) ⊃ ∃y(Suc(x, y) ∧ b(y))∧
(b(x) ∧ ¬max(x) ⊃ ∃y(Suc(x, y) ∧ a(y)))] defines
(A \ {a, b})∗((ab)∗ ∪ b(ab)∗)

I Adding conjuncts min(x) ⊃ a(x) and max(x) ⊃ b(x) to the
previous sentence defines (ab)∗

I ∀x∀y[(min(x) ⊃ a(x)) ∧ (max(x) ⊃ b(x))∧
Suc(x, y) ⊃ (b(x) ⊃ ¬b(y)) ∧ (a(x) ⊃ ¬a(y))] defines:
Over the alphabet {a,b}, the language (ab)∗

Over the alphabet {a,b,c}, the language c∗(ac∗bc∗)∗

Formulas define pointed languages

Let A be {a,b,c}; a truth checking procedure is outlined below:

1. We have uav |= a(x)

2. Since u,v are arbitrary, the formula a(x) defines the pointed
language A∗aA∗

3. Similarly uav(b ∪ c)w |= α(x, y)
def
= x < y ⊃ ¬a(y)

4. So ∀y α(x, y) defines A∗a(b ∪ c)∗

5. Again taubvcw |= β(x, y, z)
def
= x < y < z ⊃ b(y)

6. So ∀y β(x, y, z) defines A∗ab∗cA∗

7. Hence ∃z(c(z) ∧ ∀y β(x, y, z))) defines A∗ab∗cA∗

8. Since b∗c is included in (b ∪ c)∗ (and not conversely), the
intersection A∗ab∗c(b ∪ c)∗ = A∗a(b ∪ c)∗ ∩ A∗a(b∗cA∗) of
4 and 7 is definable in Σ2[<] by
∃x(a(x) ∧ ∀y(x < y ⊃ ¬a(y)) ∧ ∃z(c(z) ∧ ∀y(x < y < z ⊃ b(y))))

FO2 logic to partially ordered two-way automata

Theorem (Schwentick-Thérien-Vollmer 2002)
Given an FO2 sentence (formula), the (pointed) language defined
by it is accepted by a finite partially ordered two-way automaton.

Proof.
For FO2 formulas with free variables V1, we construct an
automaton over the alphabet A × ℘(V1): for a(x), we have an
edge; for ¬ φ we exchange final and non-final states; for φ ∧ ψ we
have a product construction. All done using partially ordered
one-way automata.

There are only two variables, so one can have ∃y > x(a(y) ∧ φ) or
∃y < x(a(y) ∧ φ). These determine instructions to go forward
and/or backward on the word looking for letters of the alphabet on
a self-loop. Finding the position y one falls down the partial order.
This can be done by partially ordered two-way automata. Boolean
operations now done by satisfying each formula in sequence. �

FO logic to counter-free automata

Theorem (Schützenberger 1966, McNaughton-Papert 1971)
Given an FO sentence (formula), the (pointed) language defined
by it is accepted by a finite counter-free automaton.

Proof.
By induction on FO formulas with free variables V1, we construct a
counter-free automaton over the pointers alphabet A × ℘(V1): for
a(x), x = y and x < y we directly construct the automata; for
φ ∧ ψ we have a product construction; for ¬ φ we assume a
deterministic automaton and exchange final and non-final states;
for ∃xφ we project the automaton to the alphabet A × ℘(V1 \ {x})
by nondeterministically guessing the position interpreting x. �

Corollary
{w | |w | ≡ 0 mod q, q ≥ 2} and (aaa)∗ are not FO-definable.

Because their syntactic monoids contain subgroups Zq and Z3.

More logics on words

MSO ::= (FO and) x ∈ Y | ∃Yφ, x, y ∈ Var1, Y ∈ Var2

FO ::= a(x) | x = y | Suc(x, y) | x < y | ¬ φ | φ ∨ ψ | ∃xφ, x, y ∈ Var1

I The MSO sentence
∃O∃E∀x[a(x) ∧ (min(x) ⊃ x ∈ O) ∧ (max(x) ⊃ x ∈ E)∧
∀y((x ∈ O ∧ Suc(x, y) ⊃ y ∈ E) ∧ (x ∈ E ∧ Suc(x, y) ⊃ y ∈ O))]
defines the language (aa)∗ which is not FO-definable

I An FO sentence is Σr [<]/Πr [<] if it has r alternating blocks of
quantifiers, with first block existential/universal

I ∆r [<] is the class of languages which are definable by both
Σr [<] and Πr [<] sentences (Σr [<] ∩ Πr [<] languages)

I An MSO sentence is MQ1
s -q0

r if it has s alternating blocks of
set quantifiers, followed by r alternating blocks of first-order
quantifiers (sentence above is MΣ1

1-Π0
1[<])

MSO logic to finite automata

Theorem (Büchi 1960, Elgot 1961, Trakhtenbrot 1962)
Given an MSO sentence (formula), the (pointed) language defined
by it is accepted by a finite automaton.

Proof.
Extending the proof for FO formulas, with free first-order variables
V1 and free set variables V2, we construct an automaton over the
extended pointers alphabet A × ℘(V1) × ℘(V2): for the atomic
formula x ∈ Y , we have a direct construction and for the set
quantifier ∃Yφ we again do a projection by nondeterministically
guessing the positions which are labelled Y . �

I As there can be many such positions labelled Y , there is no
guarantee that the construction is counter-free.

I For the “even-length words” MSO sentence, a nontrivial cycle
is introduced around an E-state (and an O-state).

The automata-logic connection
(Büchi-Elgot-Trakhtenbrot)

Theorem
Given a finite automaton, the
language accepted by it is defined
by an MΣ1

1-Π0
1[<] sentence.

∃X∃Y∃Z “state positions”
[∀x∀y(x ∈ X ∧ Suc(x, y) ⊃ y ∈ Y)
∧∀y∀z(y ∈ Y ∧ Suc(y, z) ⊃

((b(y) ⊃ z ∈ X) ∧ (a(y) ⊃ z ∈ Z)))
∧∀z∀x(z ∈ Z ∧ Suc(z, x) ⊃

((b(z) ⊃ x ∈ Z) ∧ (a(z) ⊃ x ∈ X)))

X��
�����

Y��
��

Z��
��

-
a,b

Y

b �
�
�
�/

a

k
b

S
S
S
So

a

∧∀y∀z(y ∈ Y ∧ ¬Suc(y, z) ⊃ b(y)) “goes to final state X ”
∧∀z∀x(z ∈ Z ∧ ¬Suc(z, x) ⊃ a(z)) “goes to final state X ”
∧∀x((X(x) ⊕ Y(x) ⊕ Z(x)) ∧ (a(x) ⊕ b(x))) “unique state/letter”
]
By closure under complement, on finite words MSO = M∆1

1.

Starfree expressions

Starfree expressions e ::= ∅ | a ∈ A | e1e2 | e1 ∪ e2 | e1

Starfree expressions are defined as ∅, {a | a ∈ A }, corresponding
to the empty and singleton languages, and taking the closure
under the operations e1e2 (concatenation), e1 ∪ e2 (union) and e1

(complement). (Avoiding the empty word.)

Regular expressions e ::= ∅ | a ∈ A | e1e2 | e1 ∪ e2 | e+
1

The regular expressions are obtained by closing the starfree
expressions under the operation star (iteration of concatenation).
Here we use plus. The corresponding language is
{w1 . . .wn | wi ∈ L(e1), 1 ≤ i ≤ n}.

Theorem (Kleene 1956)
Regular expressions define exactly the languages accepted by
finite automata.

Dot-depth hierarchy (Brzozowksi-Knast-Thomas)

Starfree expressions e ::= ∅ | a ∈ A | e1e2 | e1 ∪ e2 | e1

I The empty language ∅ and its complement ∅ (which is A+)
are dot-depth 0 expressions

I Closing dot-depth r expressions under concatenation and
then boolean operations gives dot-depth r + 1 expressions

Theorem (McNaughton-Papert 1971)
The dot-depth r languages are Br [<,min,max,Suc]-definable.
Hence the starfree languages are FO-definable.

I ∅ 7→ false, a 7→ (min = max) ∧ a(min)

I e1e2 7→ ∃x(e[min,x]
1 ∧ e[Suc(x),max]

2). Here an FO sentence is
relativized to an interval, e.g. a(x)[i,j] = i ≤ x ≤ j ⊃ a(x) and
(∃xφ(x))[i,j] = ∃x(i ≤ x ≤ j ∧ (φ(x)[i,j]))

I The positions min and max at the beginning and end of a
word, the successor function Suc(x) can be defined in FO

Dot-depth hierarchy (Brzozowksi-Knast-Thomas)

Suppose the alphabet A has at least two letters.

Theorem (Brzozowski-Knast 1978)
The dot-depth hierarchy is infinite: B0[<] ⊂ B1[<] ⊂ B2[<] ⊂ . . .

Let Cycler be the language of
all words w having an equal
number of a’s and b’s, such that
for all prefixes v of w, the num-
ber of b’s is at most the num-
ber of a’s, the number of a’s is
greater than the number of b’s
by at most r .

W��
�����

X��
��

Y��
��

Z��
��

-a -a

k
b

k
bT

T
T
T
T
T̂

b

�
�
�
�
�
��

a

k
a,b

Automaton for Cycle2

There is a Br+1[<]-sentence defining the language Cycler . There
is no Br [<]-sentence which defines Cycler .

Algebra-expression connection for FO(Schützenberger)

Theorem (Schützenberger 1965)
The language recognized by a finite group-free monoid is starfree.
Hence counter-free automata can only accept starfree languages.

I The two-sided ideals MmM = {nmp | n, p ∈ M} in the finite
monoid M (with h : A∗ → M), are partially ordered by inclusion

I The absence of a nontrivial subgroup means that the
intersection of a right ideal mM = {mp | p ∈ M} and a left ideal
Mm = {nm | n ∈ M} of the monoid M is at most a singleton

I Using this one can build a starfree expression for the inverse
h−1(m) of every singleton by an induction on the ideal order

I For the automaton for the language (ab ∪ ba)∗—not obviously
starfree— Schützenberger’s proof yields the starfree

expression (A∗a b(ab)∗ aA∗) ∪ (A∗b (ab)∗a bA∗), where the
language (ab)∗ is described by the expression
aA∗ ∩ A∗b ∩ A∗(aa ∪ bb)A∗

Algebra-logic connection for FO2

Theorem (Schütz.1976, Schwentick-Thérien-Vollmer 2002)
The language recognized by a finite monoid in DA is unambiguous
starfree. Hence partially ordered two-way automata can only
accept unambiguous languages, which are definable in FO2.

I The left and right ideals Mm,mM in the finite monoid with
h : A∗ → M, are partially ordered by inclusion

I A word u can be factorized u0a1 . . . atut where each ui stays in
an R-class, and each ai moves to a new R-class for aiui

I Each ui maps to an idempotent and each ai+1 takes one to
the next D-class, ai+1 has to use a letter not in ui

I A word v = v0a1 . . . atvt , where every pair h(ui) = h(vi) maps
to the same element, must map to the same h(u) = h(v)

I A symmetric result holds for right-to-left factorizations, giving
an unambiguous expression A∗0a1 . . . atA∗t , Ai ⊆ A

I Boolean combination of expressions can be written in FO2

