Relating logic to formal languages

Kamal Lodaya

The Institute of Mathematical Sciences, Chennai

October 2018

Reading

- 1. Howard Straubing: Formal languages, finite automata and circuit complexity, BIRKHÄUSER.
- 2. Wolfgang Thomas: Languages, automata and logic, in Handbook of formal language theory III, SPRINGER.
- 3. Pascal Tesson and Denis Thérien: Logic meets algebra: the case of regular languages, LMCS.

Finite automata (McCulloch and Pitts 1943)

- Fix finite alphabet A
- $M = (Q, I, F, \delta)$
- ► Finite set of states QInitial states $I \subseteq Q$ Final states $F \subseteq Q$
- "Nondeterministic" transition relation δ(a) ⊆ Q × Q, a ∈ A
- M accepts a word in A*
- The set of words accepted is its language

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Algebra (Myhill 1957)

- ► Binary relations $\wp(Q \times Q)$ form a finite monoid (M, \circ) under composition, a generated by the A-labelled transitions using $\delta(w) \circ \delta(x) = \delta(wx)$
- ► Morphism $\delta: A^* \to \wp(Q \times Q)$ from A^* (the free monoid on A) to a finite monoid
- M accepts a word w when δ(w) ∩ (I × F) ≠ Ø (language is inverse image of a finite subset of the finite monoid)
- ► Congruence $\equiv \subseteq A^* \times A^*$ $w \equiv x \iff \delta(w) = \delta(x)$

 $a \circ a \circ a = 1, \ b \circ b = 1$ (symmetric group S_3)

ション 小田 マイビット ビー シックション

Theorem (Myhill 1957, Nerode 1958, Rabin-Scott 1959)

Nondeterministic finite automata, finite monoids and deterministic finite automata are equivalent.

- 1. Given a finite automaton (possibly nondeterministic), the language accepted by it is an inverse image of a subset of a finite monoid (those relations which take an initial state to a final state), called its transition monoid
- Given a finite monoid M with distinguished set of elements D, (M, 1, {_ ∘ a | a ∈ A}, D) is a deterministic finite automaton (transition function instead of relation)

For a language, the syntactic monoid is the transition monoid of the minimal deterministic finite automaton for that language

Counter-free automata (McNaughton-Papert 1971)

- Given a finite automaton, a the nonempty word w ∈ A⁺ is a counter if δ(w) induces a nontrivial permutation on Q
- The word a is a counter in the bottom automaton on the states X, Y, Z, the word b is a counter on X, Y
- An automaton without any counter is counter-free, for example, the top automaton

 $a \circ a \circ a = 1, \ b \circ b = 1$

ション 小田 マイビット ビー シックション

(symmetric group S_3)

The transition monoid of a counter-free automaton does not contain any nontrivial subgroup.

Partially ordered automata (Meyer-Thompson 1969)

- In a partially ordered automaton, the states (Q, ≥) are partially ordered
- A transition from state q can only go to states r such that $q \ge r$
- Hence the only cycles allowed are self-loops where q = r, falling transitions where q > r cannot climb back
- (Schwentick-Thérien-Vollmer 2002) A partially ordered two-way deterministic automaton can accept more languages (e.g. checking the k'th last letter of the word)
- Partially ordered two-way automata are counter-free

The transition monoid of a partially ordered two-way deterministic automaton is in DA, defined as: if there is an idempotent element in a D-class, then the entire D-class is idempotents (this separates the self-loops from the falling transitions)

FO ::= $a(x) | x = y | x < y | Suc(x, y) | \neg \phi | \phi \lor \psi | \exists x \phi, x, y \in Var_1$

- Formulas are interpreted over words with pointers indicating the positions of variables
 ababab ⊨ Suc(x, y) ∧ b(x) ⊃ ¬b(y)
 ababab ⊭ x < y ∧ b(x) ⊃ ¬b(y)
 abaabb ⊭ Suc(x, y) ∧ b(x) ⊃ ¬b(y)
- ▶ Pointer functions like $s = [x \mapsto 5, y \mapsto 6]$ above are called "assignments" and written $w, s \models \phi$ in logic textbooks
- Formally one can use a "pointers" alphabet A × ℘(V₁) where each variable is constrained to occur exactly once in the word model. For the first formula above:

 (^a) (^b) (^a) (^b) (^a) (^b) (^b) ⊨ Suc(x, y) ∧ b(x) ⊃ ¬b(y)

- A sentence is a formula with no free variables, all variables are bound to quantifiers
- The language {w | w ⊨ ∀x∀y(Suc(x, y) ∧ b(x) ⊃ ¬b(y))} of words where the sentence holds is that accepted by the top automaton; the sentence defines the language A*bbA*

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

► Sentence $\exists x \exists y (Suc(x, y) \land b(x) \land b(y))$ defines A^*bbA^*

Sentences define languages

- Let max(x) = ¬∃ySuc(x, y) be an abbreviation, similarly define min(x), etc.
- ► $\forall x[a(x) \supset \exists y(Suc(x, y) \land b(y)) \land$ ($b(x) \land \neg max(x) \supset \exists y(Suc(x, y) \land a(y)))]$ defines ($A \setminus \{a, b\}$)*((ab)* $\cup b(ab)$ *)
- Adding conjuncts min(x) ⊃ a(x) and max(x) ⊃ b(x) to the previous sentence defines (ab)*
- ► $\forall x \forall y [(\min(x) \supset a(x)) \land (\max(x) \supset b(x)) \land$ $Suc(x, y) \supset (b(x) \supset \neg b(y)) \land (a(x) \supset \neg a(y))]$ defines: Over the alphabet {a,b}, the language $(ab)^*$ Over the alphabet {a,b,c}, the language $c^*(ac^*bc^*)^*$

ション 小田 マイビット ビー シックション

Formulas define pointed languages

Let A be {a,b,c}; a truth checking procedure is outlined below:

- 1. We have $uav \models a(x)$
- Since u,v are arbitrary, the formula a(x) defines the pointed language A*aA*
- 3. Similarly $uav(b \cup c)w \models \alpha(x, y) \stackrel{\text{def}}{=} x < y \supset \neg a(y)$
- 4. So $\forall y \ \alpha(x, y)$ defines $A^*a(b \cup c)^*$
- 5. Again $taubvcw \models \beta(x, y, z) \stackrel{\text{def}}{=} x < y < z \supset b(y)$
- 6. So $\forall y \beta(x, y, z)$ defines $A^*ab^*cA^*$
- 7. Hence $\exists z(c(z) \land \forall y \beta(x, y, z)))$ defines $A^*ab^*cA^*$
- Since b*c is included in (b ∪ c)* (and not conversely), the intersection A*ab*c(b ∪ c)* = A*a(b ∪ c)* ∩ A*a(b*cA*) of 4 and 7 is definable in Σ₂[<] by ∃x(a(x) ∧ ∀y(x < y ⊃ ¬a(y)) ∧ ∃z(c(z) ∧ ∀y(x < y < z ⊃ b(y))))

FO² logic to partially ordered two-way automata

Theorem (Schwentick-Thérien-Vollmer 2002)

Given an FO^2 sentence (formula), the (pointed) language defined by it is accepted by a finite partially ordered two-way automaton.

Proof.

For FO^2 formulas with free variables V_1 , we construct an automaton over the alphabet $A \times \wp(V_1)$: for a(x), we have an edge; for $\neg \phi$ we exchange final and non-final states; for $\phi \land \psi$ we have a product construction. All done using partially ordered one-way automata.

There are only two variables, so one can have $\exists y > x(a(y) \land \phi)$ or $\exists y < x(a(y) \land \phi)$. These determine instructions to go forward and/or backward on the word looking for letters of the alphabet on a self-loop. Finding the position *y* one falls down the partial order. This can be done by partially ordered two-way automata. Boolean operations now done by satisfying each formula in sequence.

Theorem (Schützenberger 1966, McNaughton-Papert 1971)

Given an FO sentence (formula), the (pointed) language defined by it is accepted by a finite counter-free automaton.

Proof.

By induction on *FO* formulas with free variables V_1 , we construct a counter-free automaton over the pointers alphabet $A \times \wp(V_1)$: for a(x), x = y and x < y we directly construct the automata; for $\phi \land \psi$ we have a product construction; for $\neg \phi$ we assume a deterministic automaton and exchange final and non-final states; for $\exists x \phi$ we project the automaton to the alphabet $A \times \wp(V_1 \setminus \{x\})$ by nondeterministically guessing the position interpreting x.

Corollary

 $\{w \mid |w| \equiv 0 \mod q, q \ge 2\}$ and $(aaa)^*$ are not FO-definable. Because their syntactic monoids contain subgroups Z_q and Z_3 . $MSO ::= (FO \text{ and }) x \in Y \mid \exists Y\phi, x, y \in Var_1, Y \in Var_2$ $FO ::= a(x) \mid x = y \mid Suc(x, y) \mid x < y \mid \neg \phi \mid \phi \lor \psi \mid \exists x\phi, x, y \in Var_1$

- ► The MSO sentence $\exists O \exists E \forall x [a(x) \land (min(x) \supset x \in O) \land (max(x) \supset x \in E) \land$ $\forall y ((x \in O \land Suc(x, y) \supset y \in E) \land (x \in E \land Suc(x, y) \supset y \in O))]$ defines the language $(aa)^*$ which is not FO-definable
- An FO sentence is ∑_r[<]/⊓_r[<] if it has r alternating blocks of quantifiers, with first block existential/universal</p>
- $\Delta_r[<]$ is the class of languages which are definable by both $\Sigma_r[<]$ and $\Pi_r[<]$ sentences ($\Sigma_r[<] \cap \Pi_r[<]$ languages)
- An MSO sentence is MQ_s¹-q_r⁰ if it has s alternating blocks of set quantifiers, followed by r alternating blocks of first-order quantifiers (sentence above is MΣ₁¹-Π₁⁰[<])</p>

Theorem (Büchi 1960, Elgot 1961, Trakhtenbrot 1962)

Given an MSO sentence (formula), the (pointed) language defined by it is accepted by a finite automaton.

Proof.

Extending the proof for *FO* formulas, with free first-order variables V_1 and free set variables V_2 , we construct an automaton over the extended pointers alphabet $A \times \wp(V_1) \times \wp(V_2)$: for the atomic formula $x \in Y$, we have a direct construction and for the set quantifier $\exists Y \phi$ we again do a projection by nondeterministically guessing the positions which are labelled Y.

- As there can be many such positions labelled Y, there is no guarantee that the construction is counter-free.
- For the "even-length words" MSO sentence, a nontrivial cycle is introduced around an *E*-state (and an *O*-state).

The automata-logic connection (Büchi-Elgot-Trakhtenbrot)

Theorem

Given a finite automaton, the a,b language accepted by it is defined by an $M\Sigma_1^1 - \Pi_1^0[<]$ sentence. h $\exists X \exists Y \exists Z$ "state positions" а $[\forall x \forall y (x \in X \land Suc(x, y) \supset y \in Y)]$ $\land \forall y \forall z (y \in Y \land Suc(y, z) \supset$ Ζ b $((b(y) \supset z \in X) \land (a(y) \supset z \in Z)))$ $\land \forall z \forall x (z \in Z \land Suc(z, x) \supset$ $((b(z) \supset x \in Z) \land (a(z) \supset x \in X)))$ $\land \forall y \forall z (y \in Y \land \neg Suc(y, z) \supset b(y))$ "goes to final state X" $\wedge \forall z \forall x (z \in Z \land \neg Suc(z, x) \supset a(z))$ "goes to final state X" $\wedge \forall x((X(x) \oplus Y(x) \oplus Z(x)) \wedge (a(x) \oplus b(x)))$ "unique state/letter" By closure under complement, on finite words $MSO = M\Delta_1^1$.

・ロト・日本・日本・日本・日本・日本

Starfree expressions $e ::= \emptyset \mid a \in A \mid e_1 e_2 \mid e_1 \cup e_2 \mid \overline{e_1}$

Starfree expressions are defined as \emptyset , { $a \mid a \in A$ }, corresponding to the empty and singleton languages, and taking the closure under the operations e_1e_2 (concatenation), $e_1 \cup e_2$ (union) and $\overline{e_1}$ (complement). (Avoiding the empty word.)

Regular expressions $e ::= \emptyset \mid a \in A \mid e_1 e_2 \mid e_1 \cup e_2 \mid e_1^+$

The regular expressions are obtained by closing the starfree expressions under the operation star (iteration of concatenation). Here we use plus. The corresponding language is $\{w_1 \dots w_n \mid w_i \in L(e_1), 1 \le i \le n\}$.

Theorem (Kleene 1956)

Regular expressions define exactly the languages accepted by finite automata.

Dot-depth hierarchy (Brzozowksi-Knast-Thomas)

Starfree expressions $e ::= \emptyset \mid a \in A \mid e_1 e_2 \mid e_1 \cup e_2 \mid \overline{e_1}$

- The empty language Ø and its complement Ø (which is A⁺) are dot-depth 0 expressions
- Closing dot-depth r expressions under concatenation and then boolean operations gives dot-depth r + 1 expressions

Theorem (McNaughton-Papert 1971)

The dot-depth r languages are $\mathcal{B}_r[<, \min, \max, Suc]$ -definable. Hence the starfree languages are FO-definable.

- $\emptyset \mapsto \text{false}, a \mapsto (\min = \max) \land a(\min)$
- ► $e_1e_2 \mapsto \exists x(e_1^{[min,x]} \land e_2^{[Suc(x),max]})$. Here an *FO* sentence is relativized to an interval, e.g. $a(x)^{[i,j]} = i \le x \le j \supset a(x)$ and $(\exists x\phi(x))^{[i,j]} = \exists x(i \le x \le j \land (\phi(x)^{[i,j]}))$
- The positions min and max at the beginning and end of a word, the successor function Suc(x) can be defined in FO

Suppose the alphabet A has at least two letters.

Theorem (Brzozowski-Knast 1978)

The dot-depth hierarchy is infinite: $\mathcal{B}_0[<] \subset \mathcal{B}_1[<] \subset \mathcal{B}_2[<] \subset \dots$ Let Cycle, be the language of W all words w having an equal number of a's and b's, such that for all prefixes v of w, the numb ber of b's is at most the number of a's, the number of a's is greater than the number of b's by at most r.

7 a,b

Automaton for Cycle₂

There is a $\mathcal{B}_{r+1}[<]$ -sentence defining the language *Cycle*. There is no $\mathcal{B}_r[<]$ -sentence which defines *Cycle*_r.

Theorem (Schützenberger 1965)

The language recognized by a finite group-free monoid is starfree. Hence counter-free automata can only accept starfree languages.

- The two-sided ideals MmM = {nmp | n, p ∈ M} in the finite monoid M (with h : A* → M), are partially ordered by inclusion
- The absence of a nontrivial subgroup means that the intersection of a right ideal mM = {mp | p ∈ M} and a left ideal Mm = {nm | n ∈ M} of the monoid M is at most a singleton
- Using this one can build a starfree expression for the inverse $h^{-1}(m)$ of every singleton by an induction on the ideal order
- For the automaton for the language (ab ∪ ba)*—not obviously starfree— Schützenberger's proof yields the starfree

expression $(\overline{A^*a} \ b(ab)^* \ \overline{aA^*}) \cup (\overline{A^*b} \ (ab)^*a \ \overline{bA^*})$, where the language $(ab)^*$ is described by the expression $aA^* \cap A^*b \cap \overline{A^*(aa \cup bb)A^*}$

Algebra-logic connection for FO^2

Theorem (Schütz.1976, Schwentick-Thérien-Vollmer 2002)

The language recognized by a finite monoid in DA is unambiguous starfree. Hence partially ordered two-way automata can only accept unambiguous languages, which are definable in FO^2 .

- ► The left and right ideals Mm, mM in the finite monoid with $h: A^* \rightarrow M$, are partially ordered by inclusion
- A word u can be factorized u₀a₁...a_tu_t where each u_i stays in an R-class, and each a_i moves to a new R-class for a_iu_i
- Each u_i maps to an idempotent and each a_{i+1} takes one to the next D-class, a_{i+1} has to use a letter not in u_i
- A word v = v₀a₁...a_tv_t, where every pair h(u_i) = h(v_i) maps to the same element, must map to the same h(u) = h(v)
- A symmetric result holds for right-to-left factorizations, giving an unambiguous expression A^{*}₀a₁...a_tA^{*}_t, A_i ⊆ A
- Boolean combination of expressions can be written in FO²