Relating logic to formal languages

Kamal Lodaya

The Institute of Mathematical Sciences, Chennai
October 2018

Reading

1. Howard Straubing: Formal languages, finite automata and circuit complexity, birkhäuser.
2. Wolfgang Thomas: Languages, automata and logic, in Handbook of formal language theory III, springer.
3. Pascal Tesson and Denis Thérien: Logic meets algebra: the case of regular languages, lmсs.

Finite automata (McCulloch and Pitts 1943)

- Fix finite alphabet A
- $M=(Q, I, F, \delta)$
- Finite set of states Q Initial states $I \subseteq Q$
Final states $F \subseteq Q$
- "Nondeterministic" transition relation $\delta(a) \subseteq Q \times Q, \quad a \in A$
- M accepts a word in A^{*}
- The set of words accepted is its language

Algebra (Myhill 1957)

- Binary relations $\wp(Q \times Q)$ form a finite monoid (M, \circ) under composition, generated by the A-labelled transitions using

$$
\delta(w) \circ \delta(x)=\delta(w x)
$$

- Morphism $\delta: A^{*} \rightarrow \wp(Q \times Q)$ from A^{*} (the free monoid on A) to a finite monoid
- M accepts a word w when $\delta(w) \cap(I \times F) \neq \emptyset$ (language is inverse image of a finite subset of the finite monoid)
- Congruence $\equiv \subseteq A^{*} \times A^{*}$

$$
w \equiv x \Longleftrightarrow \delta(w)=\delta(x)
$$

The automata-algebra connection

Theorem (Myhill 1957, Nerode 1958, Rabin-Scott 1959)

Nondeterministic finite automata, finite monoids and deterministic finite automata are equivalent.

1. Given a finite automaton (possibly nondeterministic), the language accepted by it is an inverse image of a subset of a finite monoid (those relations which take an initial state to a final state), called its transition monoid
2. Given a finite monoid M with distinguished set of elements D, $\left(M, 1,\left\{_a \mid a \in A\right\}, D\right)$ is a deterministic finite automaton (transition function instead of relation)

For a language, the syntactic monoid is the transition monoid of the minimal deterministic finite automaton for that language

Counter-free automata (McNaughton-Papert 1971)

- Given a finite automaton, the nonempty word $w \in A^{+}$ is a counter if $\delta(w)$ induces a nontrivial permutation on Q
- The word a is a counter in the bottom automaton on the states X, Y, Z, the word b is a counter on X, Y
- An automaton without any counter is counter-free, for example, the top automaton

$A \circ a \stackrel{a}{=} a, b \circ b=0$

$$
a \circ a \circ a=1, b \circ b=1
$$

(symmetric group S_{3})

The transition monoid of a counter-free automaton does not contain any nontrivial subgroup.

Partially ordered automata (Meyer-Thompson 1969)

- In a partially ordered automaton, the states (Q, \geq) are partially ordered
- A transition from state q can only go to states r such that $q \geq r$
- Hence the only cycles allowed are self-loops where $q=r$, falling transitions where $q>r$ cannot climb back
- (Schwentick-Thérien-Vollmer 2002) A partially ordered two-way deterministic automaton can accept more languages (e.g. checking the k 'th last letter of the word)
- Partially ordered two-way automata are counter-free

The transition monoid of a partially ordered two-way deterministic automaton is in DA, defined as: if there is an idempotent element in a D-class, then the entire D-class is idempotents (this separates the self-loops from the falling transitions)

Logic on words (Büchi 1960)

FO $::=a(x)|x=y| x<y|\operatorname{Suc}(x, y)| \neg \phi|\phi \vee \psi| \exists x \phi, x, y \in \operatorname{Var}_{1}$

- Formulas are interpreted over words with pointers indicating the positions of variables
ababab $\models \operatorname{Suc}(x, y) \wedge b(x) \supset \neg b(y)$
ababab $\forall \vDash x<y \wedge b(x) \supset \neg b(y)$
abaabb $\not \models \operatorname{Suc}(x, y) \wedge b(x) \supset \neg b(y)$
- Pointer functions like $s=[x \mapsto 5, y \mapsto 6]$ above are called "assignments" and written $w, s \models \phi$ in logic textbooks
- Formally one can use a "pointers" alphabet $A \times \wp\left(V_{1}\right)$ where each variable is constrained to occur exactly once in the word model. For the first formula above:

$$
\binom{a}{b}\binom{b}{b}\binom{a}{b}\binom{b}{\{x\}}\binom{a}{\{y\}}\binom{b}{b} \models \operatorname{Suc}(x, y) \wedge b(x) \supset \neg b(y)
$$

Sentences

$$
\begin{aligned}
\text { FO }::= & a(x)|x=y| x<y|\operatorname{Suc}(x, y)| \\
& \neg \phi|\phi \vee \psi| \\
& \exists x \phi, x, y \in \operatorname{Var}_{1}
\end{aligned}
$$

- A sentence is a formula with no free variables, all variables are bound to quantifiers
- The language $\{w \mid w \models \forall x \forall y(\operatorname{Suc}(x, y) \wedge b(x) \supset \neg b(y))\}$ of words where the sentence holds is that accepted by the top automaton; the sentence defines the language $\overline{A^{*} b b A^{*}}$
- Sentence $\exists x \exists y(\operatorname{Suc}(x, y) \wedge b(x) \wedge b(y))$ defines $A^{*} b b A^{*}$

Sentences define languages

- Let $\max (x)=\neg \exists y \operatorname{Suc}(x, y)$ be an abbreviation, similarly define $\min (x)$, etc.
- $\forall x[a(x) \supset \exists y(\operatorname{Suc}(x, y) \wedge b(y)) \wedge$
$(b(x) \wedge \neg \max (x) \supset \exists y(\operatorname{Suc}(x, y) \wedge a(y)))]$ defines $(A \backslash\{a, b\})^{*}\left((a b)^{*} \cup b(a b)^{*}\right)$
- Adding conjuncts $\min (x) \supset a(x)$ and $\max (x) \supset b(x)$ to the previous sentence defines (ab)*
- $\forall x \forall y[(\min (x) \supset a(x)) \wedge(\max (x) \supset b(x)) \wedge$ $\operatorname{Suc}(x, y) \supset(b(x) \supset \neg b(y)) \wedge(a(x) \supset \neg a(y))]$ defines:
Over the alphabet $\{\mathrm{a}, \mathrm{b}\}$, the language $(\mathrm{ab})^{*}$
Over the alphabet $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$, the language $c^{*}\left(a c^{*} b c^{*}\right)^{*}$

Formulas define pointed languages

Let A be $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$; a truth checking procedure is outlined below:

1. We have uav $\models a(x)$
2. Since u, v are arbitrary, the formula $a(x)$ defines the pointed language $A^{*} a A^{*}$
3. Similarly $\operatorname{uav}(\mathrm{b} \cup \mathrm{c}) w \models \alpha(x, y) \stackrel{\text { def }}{=} x<y \supset \neg a(y)$
4. So $\forall y \alpha(x, y)$ defines $A^{*} a(b \cup c)^{*}$
5. Again taubvcw $\models \beta(x, y, z) \stackrel{\text { def }}{=} x<y<z \supset b(y)$
6. So $\forall y \beta(x, y, z)$ defines $A^{*} a b^{*} c A^{*}$
7. Hence $\exists z(c(z) \wedge \forall y \beta(x, y, z)))$ defines $A^{*} a b^{*} c A^{*}$
8. Since $b^{*} c$ is included in $(b \cup c)^{*}$ (and not conversely), the intersection $A^{*} a b^{*} c(b \cup c)^{*}=A^{*} a(b \cup c)^{*} \cap A^{*} a\left(b^{*} c A^{*}\right)$ of 4 and 7 is definable in $\Sigma_{2}[<]$ by

$$
\exists x(a(x) \wedge \forall y(x<y \supset \neg a(y)) \wedge \exists z(c(z) \wedge \forall y(x<y<z \supset b(y))))
$$

FO ${ }^{2}$ logic to partially ordered two-way automata

Theorem (Schwentick-Thérien-Vollmer 2002)

Given an FO^{2} sentence (formula), the (pointed) language defined by it is accepted by a finite partially ordered two-way automaton.

Proof.

For $F O^{2}$ formulas with free variables V_{1}, we construct an automaton over the alphabet $A \times \wp\left(V_{1}\right)$: for $a(x)$, we have an edge; for $\neg \phi$ we exchange final and non-final states; for $\phi \wedge \psi$ we have a product construction. All done using partially ordered one-way automata.

There are only two variables, so one can have $\exists y>x(a(y) \wedge \phi)$ or $\exists y<x(a(y) \wedge \phi)$. These determine instructions to go forward and/or backward on the word looking for letters of the alphabet on a self-loop. Finding the position y one falls down the partial order. This can be done by partially ordered two-way automata. Boolean operations now done by satisfying each formula in sequence.

FO logic to counter-free automata

Theorem (Schützenberger 1966, McNaughton-Papert 1971)

Given an FO sentence (formula), the (pointed) language defined by it is accepted by a finite counter-free automaton.

Proof.

By induction on FO formulas with free variables V_{1}, we construct a counter-free automaton over the pointers alphabet $A \times \wp_{\wp}\left(V_{1}\right)$: for $a(x), x=y$ and $x<y$ we directly construct the automata; for $\phi \wedge \psi$ we have a product construction; for $\neg \phi$ we assume a deterministic automaton and exchange final and non-final states; for $\exists x \phi$ we project the automaton to the alphabet $A \times \wp\left(V_{1} \backslash\{x\}\right)$ by nondeterministically guessing the position interpreting x.

Corollary

$\{w||w| \equiv 0 \bmod q, q \geq 2\}$ and (aaa)* are not $F O$-definable. Because their syntactic monoids contain subgroups Z_{q} and Z_{3}.

More logics on words

$$
\begin{aligned}
& M S O::=(F O \text { and }) x \in Y \mid \exists Y \phi, x, y \in \operatorname{Var}_{1}, Y \in \operatorname{Var}_{2} \\
& F O::=a(x)|x=y| \operatorname{Suc}(x, y)|x<y| \neg \phi|\phi \vee \psi| \exists x \phi, x, y \in \operatorname{Var}_{1}
\end{aligned}
$$

- The MSO sentence $\exists O \exists E \forall x[a(x) \wedge(\min (x) \supset x \in O) \wedge(\max (x) \supset x \in E) \wedge$ $\forall y((x \in O \wedge \operatorname{Suc}(x, y) \supset y \in E) \wedge(x \in E \wedge \operatorname{Suc}(x, y) \supset y \in O))]$ defines the language (aa)* which is not FO-definable
- An FO sentence is $\Sigma_{r}[<] / \Pi_{r}[<]$ if it has r alternating blocks of quantifiers, with first block existential/universal
- $\Delta_{r}[<]$ is the class of languages which are definable by both $\Sigma_{r}[<]$ and $\Pi_{r}[<]$ sentences $\left(\Sigma_{r}[<] \cap \Pi_{r}[<]\right.$ languages)
- An MSO sentence is $M Q_{s}^{1}-q_{r}^{0}$ if it has s alternating blocks of set quantifiers, followed by r alternating blocks of first-order quantifiers (sentence above is $M \Sigma_{1}^{1}-\Pi_{1}^{0}[<]$)

MSO logic to finite automata

Theorem (Büchi 1960, Elgot 1961, Trakhtenbrot 1962)

Given an MSO sentence (formula), the (pointed) language defined by it is accepted by a finite automaton.

Proof.

Extending the proof for FO formulas, with free first-order variables V_{1} and free set variables V_{2}, we construct an automaton over the extended pointers alphabet $A \times \wp\left(V_{1}\right) \times \wp\left(V_{2}\right)$: for the atomic formula $x \in Y$, we have a direct construction and for the set quantifier $\exists Y \phi$ we again do a projection by nondeterministically guessing the positions which are labelled Y.

- As there can be many such positions labelled Y, there is no guarantee that the construction is counter-free.
- For the "even-length words" MSO sentence, a nontrivial cycle is introduced around an E -state (and an O -state).

The automata-logic connection

(Büchi-Elgot-Trakhtenbrot)

Theorem

Given a finite automaton, the language accepted by it is defined by an $M \Sigma_{1}^{1}-\Pi_{1}^{0}[<]$ sentence.
$\exists X \exists Y \exists Z$ "state positions"
$[\forall x \forall y(x \in X \wedge \operatorname{Suc}(x, y) \supset y \in Y)$
$\wedge \forall y \forall z(y \in Y \wedge \operatorname{Suc}(y, z) \supset$
$((b(y) \supset z \in X) \wedge(a(y) \supset z \in Z)))$

$\wedge \forall z \forall x(z \in Z \wedge \operatorname{Suc}(z, x) \supset$

$$
((b(z) \supset x \in Z) \wedge(a(z) \supset x \in X)))
$$

$\wedge \forall y \forall z(y \in Y \wedge \neg \operatorname{Suc}(y, z) \supset b(y))$ "goes to final state X "
$\wedge \forall z \forall x(z \in Z \wedge \neg \operatorname{Suc}(z, x) \supset a(z))$ "goes to final state X " $\wedge \forall x((X(x) \oplus Y(x) \oplus Z(x)) \wedge(a(x) \oplus b(x)))$ "unique state/letter"]
By closure under complement, on finite words $M S O=M \Delta_{1}^{1}$.

Starfree expressions

Starfree expressions e $::=\emptyset|a \in A| e_{1} e_{2}\left|e_{1} \cup e_{2}\right| \overline{e_{1}}$
Starfree expressions are defined as $\emptyset,\{a \mid a \in A\}$, corresponding to the empty and singleton languages, and taking the closure under the operations $e_{1} e_{2}$ (concatenation), $e_{1} \cup e_{2}$ (union) and $\overline{e_{1}}$ (complement). (Avoiding the empty word.)

Regular expressions $e::=\emptyset|a \in A| e_{1} e_{2}\left|e_{1} \cup e_{2}\right| e_{1}^{+}$
The regular expressions are obtained by closing the starfree expressions under the operation star (iteration of concatenation). Here we use plus. The corresponding language is
$\left\{w_{1} \ldots w_{n} \mid w_{i} \in L\left(e_{1}\right), 1 \leq i \leq n\right\}$.
Theorem (Kleene 1956)
Regular expressions define exactly the languages accepted by finite automata.

Dot-depth hierarchy (Brzozowksi-Knast-Thomas)

Starfree expressions e $::=\emptyset|a \in A| e_{1} e_{2}\left|e_{1} \cup e_{2}\right| \overline{e_{1}}$

- The empty language \emptyset and its complement $\bar{\emptyset}$ (which is A^{+}) are dot-depth 0 expressions
- Closing dot-depth r expressions under concatenation and then boolean operations gives dot-depth $r+1$ expressions

Theorem (McNaughton-Papert 1971)

The dot-depth r languages are $\mathcal{B}_{r}[<$, min, max, Suc]-definable. Hence the starfree languages are FO-definable.

- $\emptyset \mapsto$ false, $\quad a \mapsto(\min =\max) \wedge a(\min)$
- $e_{1} e_{2} \mapsto \exists x\left(e_{1}^{[\min , x]} \wedge e_{2}^{[\operatorname{Suc}(x), \max]}\right)$. Here an FO sentence is relativized to an interval, e.g. $a(x)^{[i, j]}=i \leq x \leq j \supset a(x)$ and $(\exists x \phi(x))^{[i, j]}=\exists x\left(i \leq x \leq j \wedge\left(\phi(x)^{[i, j]}\right)\right)$
- The positions min and max at the beginning and end of a word, the successor function $\operatorname{Suc}(x)$ can be defined in FO

Dot-depth hierarchy (Brzozowksi-Knast-Thomas)

Suppose the alphabet A has at least two letters.
Theorem (Brzozowski-Knast 1978)
The dot-depth hierarchy is infinite: $\mathcal{B}_{0}[<] \subset \mathcal{B}_{1}[<] \subset \mathcal{B}_{2}[<] \subset \ldots$ Let Cycle_{r} be the language of all words w having an equal number of a's and b's, such that for all prefixes v of w, the number of b's is at most the number of a's, the number of a's is greater than the number of b's by at most r.

Automaton for Cycle_{2}
There is a $\mathcal{B}_{r+1}[<]$-sentence defining the language Cycle $_{r}$. There is no $\mathcal{B}_{r}[<]$-sentence which defines Cycle $_{r}$.

Algebra-expression connection for $F O$ (Schützenberger)

Theorem (Schützenberger 1965)

The language recognized by a finite group-free monoid is starfree. Hence counter-free automata can only accept starfree languages.

- The two-sided ideals $M m M=\{n m p \mid n, p \in M\}$ in the finite monoid M (with $h: A^{*} \rightarrow M$), are partially ordered by inclusion
- The absence of a nontrivial subgroup means that the intersection of a right ideal $m M=\{m p \mid p \in M\}$ and a left ideal $M m=\{n m \mid n \in M\}$ of the monoid M is at most a singleton
- Using this one can build a starfree expression for the inverse $h^{-1}(m)$ of every singleton by an induction on the ideal order
- For the automaton for the language ($a b \cup b a)^{*}$-not obviously starfree- Schützenberger's proof yields the starfree expression $\left(\overline{A^{*} a} b(a b)^{*} \overline{a A^{*}}\right) \cup\left(\overline{A^{*} b}(a b)^{*} a \overline{b A^{*}}\right)$, where the language $(a b)^{*}$ is described by the expression $a A^{*} \cap A^{*} b \cap \overline{A^{*}(a a \cup b b) A^{*}}$

Algebra-logic connection for $F O^{2}$

Theorem (Schütz.1976, Schwentick-Thérien-Vollmer 2002)

The language recognized by a finite monoid in DA is unambiguous starfree. Hence partially ordered two-way automata can only accept unambiguous languages, which are definable in FO^{2}.

- The left and right ideals $M m, m M$ in the finite monoid with $h: A^{*} \rightarrow M$, are partially ordered by inclusion
- A word u can be factorized $u_{0} a_{1} \ldots a_{t} u_{t}$ where each u_{i} stays in an R-class, and each a_{i} moves to a new R-class for $a_{i} u_{i}$
- Each u_{i} maps to an idempotent and each a_{i+1} takes one to the next D-class, a_{i+1} has to use a letter not in u_{i}
- A word $v=v_{0} a_{1} \ldots a_{t} v_{t}$, where every pair $h\left(u_{i}\right)=h\left(v_{i}\right)$ maps to the same element, must map to the same $h(u)=h(v)$
- A symmetric result holds for right-to-left factorizations, giving an unambiguous expression $A_{0}^{*} a_{1} \ldots a_{t} A_{t}^{*}, A_{i} \subseteq A$
- Boolean combination of expressions can be written in FO^{2}

